
Chapter 5

5-1

Chapter 5
Retrospective Analysis of Passage Mortality of

Spring Chinook of the Columbia River

by Rick Deriso, David Marmorek and Ian Parnell

Abstract

There have been decades of debates about passage mortality in the Columbia River. We empirically
estimated instantaneous in-river passage mortality (µ) and its associated probability distribution, using
spawning and recruitment data for seven Snake River and six lower Columbia River spring chinook
populations. Our empirical estimates of µ showed low bias, and were generally close to (and between)
those produced by the two more mechanistic models CRiSP and FLUSH, though significantly higher than
one version of CRiSP. A total of 37 models were applied to the data, incorporating different assumptions
about spawner-measurement error, transport survival, intrinsic productivity, methods of estimating µ, and
‘year effects’ which accommodate common factors affecting the survival of all stocks. The 12 ‘top’
models estimates of mean µ ranged from 0.55-1.90 (grand mean of 1.09); two of these models simply
made µ proportional to Water Transit Time (WTT). These estimates of µ imply that in-river passage from
Lower Granite to John Day dam reduced recruitment, of 1970-1990 broods by an average of 42-85%
(grand mean of 66%). The time trend in µ was cyclical and generally moderate to high for 1970’s brood
years, low for 1980-1983, slightly cyclical around the long-term average for 1984-1989, and high in 1990.
The year effect shifts from generally positive effects on 1952-1968 brood years to generally negative
effects on 1970-1990 broods. Year effects were not correlated with WTT, µ, the North Pacific Index
(NPI) or an Upwelling Index, but were inversely correlated with Bristol Bay (Alaska) sockeye survival
anomalies. We discuss the improvements required to apply these models to prospective analyses.

5.1 Introduction

Stock and recruitment data can provide a powerful basis for inferential hypothesis testing and estimation
regarding mortality experienced by salmon during their down-river migration. In order to develop
inferences we need a simple model of the salmon populations of the Columbia River system that can be
used to simultaneously estimate factors affecting the survival of each salmon population.

Stock and recruitment models for the chinook stocks of the Columbia River contain four basic
components: natural mortality, fishing mortality, in-river passage mortality, and spawning. In the models
described here we focus on a series of simple models that assume that survival of chinook from rivers of
the Columbia share many similar aspects. In particular, ocean mortality rates are assumed to share many
common attributes across stocks from different streams. By making such an assumption, the primary
systematic difference in survival of chinook from up-river, mid-river, and down-river streams can be
attributed to differences in their in-river passage mortality, after accounting for basic population
differences in their intrinsic productivity (that is, the Ricker a and b parameters) and individual stream
random effects. The model contains a ‘year-effect’ component to mortalities which permits the model
flexibility to accommodate a common factor affecting survival of all the stocks (as for example, a
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common ocean mortality factor). We exploit the fact that many dams along the Columbia and Snake
River were initiated at various times encompassed by the time series of available stock and recruitment
data and that various populations are exposed to different numbers of dams, much in the spirit of the
staircase experimental design method of Walters et al (1989).

The goal is to estimate in-river passage mortality and its associated probability distribution by fitting
stock and recruitment models to available data on recruitment and escapement (plus any ancillary
information available). In particular we estimate the passage mortality for spring Chinook salmon that
they experience during their seaward journey from sub-basins of the Snake River through a total of five
main-stem dams down to the John Day dam located in the mid-Columbia River; the salmon pass through
three additional main-stem dams from the John Day dam to the ocean. We utilize the population time
series available for seven of the Snake River sub-basin populations and six population time series
available in the mid- and lower-river sub-basins (described more fully in the next Section). Recruitment is
estimated for the mouth of the Columbia River based on the methods described in Beamesderfer et al
(1996), and summarized in Section 3.3 of Chapter 3. We compare a series of alternative models including
ones that use estimates made by two passage models (CRiSP - Anderson et al. 19961, and FLUSH -
Wilson et al. 1994) and characterize differences and similarities between the estimates. A prime
motivation for this analysis was to assess to what degree competing models’ more mechanistic
approaches to estimating passage mortality agree with the more hybrid/empirical models we used.

We acknowledge with much thanks the contributions of stock-recruitment data from Howard Schaller and
Ray Beamesderfer (ODFW), Charlie Petrosky (IDFG), and Olaf Langness (WDFW); FLUSH model
projections from Earl Weber (CRITFC) and Paul Wilson (CBFWA); CRISP model projections from Jim
Anderson and Josh Hayes (Columbia Basin Research) and David Askren (BPA); and spawner-
measurement error estimates from Charlie Petrosky (Appendix 5-1). Many PATH participants contributed
towards the formulation of this approach, through a series of workshops and technical meetings.

5.2 Spring and Summer Chinook Salmon Populations Examined

Thirteen populations of Chinook salmon were analyzed in this study. They represent three down-river
subbasins — those of the Wind River, Klickitat River , and Warm Springs River ; three populations in the
John Day subbasin system — the John Day Main-stem, John Day Middle Fork, and John Day North Fork;
and seven up-river subbasins all branching from the Snake River — those of the Imnaha, Minam, Bear
Valley, Marsh Creek, Sulphur Creek, Poverty Flat, and Johnson Creek Rivers. Those thirteen populations
represent the total number of populations on the lower to middle Columbia River system and Snake River
system for which time series of spawner and recruitment information were available. Additional
population time series are available for the Upper Columbia River, which we plan to analyze in a future
report. Table 5-1 summarizes the number of main-river dams located below each river subbasin along
with the number of years of spawner and recruitment information available.

Each of these subbasins are described in Chapter 3 of this report (Schaller et al. 1996), and in more detail
in Beamesderfer et al. (1996).

                                                
1 A description of the theory, calibration, and validation of the CRiSP model can be found in Anderson

et al (1996). Documentation of parameters used for the CRiSP survival values are identified in
(Askren 1996). Several sensitivity analyses for CRiSP survival estimates are also provided in
Anderson et al (1996, p.192 - 201) and Askren (1996).
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Table 5-1: Summary information on the thirteen chinook populations analyzed in this study.

Sub-basin
Brood Years of Paired
Spawner-recruit Data

Number of Main-stem
Dams Below Sub-basin

1. Wind 1973 - 1990 1
2. Klickitat 1966 - 1990 1
3. Warm Springs 1969 - 1990 2
4. John Day Mainstem
5. John Day Mid Fork
6. John Day North Fork

1959 - 1990
1959 - 1990
1959 - 1990

3
3
3

7. Imnaha 1952 - 1990 8
8. Minam 1954 - 1990 8
9. Bear Valley 1957 - 1990 8
10. Marsh Creek 1957 - 1990 8
11. Sulphur Creek 1957 - 1990 8
12. Poverty Flat 1957 - 1990 8
13. Johnson Creek 1957 - 1990 8

5.3 Population Models

The general model structure is based on a Ricker type spawner-recruitment model, similar in structure to
the Ricker models used in Chapters 3, 4, and 9, but explicitly accounting for measurement error:

t,i t,i t,i i
x

t,i t,iy  =  x  +a  -  b e  -  m  +  t,i ε [1]

ln( S ) =  x  +  ’t,i t,i t,iε [1a]

Where: yt,i = ln Rt,i

Rt,i = Columbia River “observed” returns (recruitment) originating from spawning in
year t and river sub-basin i (# of fish)

St,i = “observed” spawning in year t and river sub-basin i (# of fish)
xt,i = “true” logarithm of spawning
at,i = Ricker a parameter, which depends on year and river (unitless)
bi = Ricker b parameter, which depends on river (1/fish)
mt,i = in-river passage mortality which depends on year and river (unitless)
εt,i = normally distributed mixed process error and recruitment measurement error term

N (0,σ2
ε) [ln(# of fish)]

ε′t,i = normally distributed spawner enumeration measurement error term N (0,σ2
ε′) [ln(#

of fish)]
t = year
i = sub-basin

Notice that model (1) combines all non-dam, density-independent mortality sources into a single
parameter at,i except for the additive process error εt,i. Thus, the a parameter is composed of a sum of egg-
to-fry, fry-to-smolt, and smolt-to-adult density-independent mortality. The density-dependent parameter b
is chosen to be area-specific to reflect the different carrying capacities of different areas. Typically
estimates of the a and b coefficients are confounded so that we did not attempt to model temporal changes
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in carrying capacity explicitly. Note that setting e¢t,i and mt,i to zero, and substituting ln (St,i) for xt,i in
Equation [1] generates the logarithmic form of the Ricker model.

Chinook salmon may return to spawn at age 3, 4 or 5. The model does not contain separate mortality
terms for each age class of a given brood. Instead the assumption was made of a constant post-age-4
ocean survival. Inter-annual variation in ocean survival is confined to the fish’s first two years of life in
the ocean and estuarine environment. In their final years at sea, ocean mortality for Chinook is probably
lower — M=0.2 per year was estimated in Ricker (1976) — and therefore likely does not induce large
systematic variations in total ocean mortality of Chinook, as compared to total mortality rates on the order
of 4.07 (Bradford 1995), which covers total mortality from the smolt life-stage to adult return for similar
stream-type chinook. Other assumptions regarding ocean survival are discussed further below. The data
assumption, namely that stock and recruitment estimates are available by run, utilizes the estimates
obtained in Petrosky et al (1995) and recent unpublished estimates obtained from PATH participants.

Structure for the a parameters was added in three alternative ways:

t,i ta  =  a +  δ [2]

t,i i ta  =  a  +  δ [3]

t,i i t regiona  =  a  +  ,δ [4]

where in each alternative the parameter a is the Ricker a parameter; i is the subbasin (e.g. Imnaha);
‘region’ refers to either the 7 up-river subbasins or the 6 downriver subbasins. In Equation [2], the model
where the Ricker a value was assumed to be the same for different stocks, we still retained a separate a
coefficient for the Wind River stock because it is an introduced stock (see Chapter 3 of this report). In
Equation [3] the model allows the Ricker a parameter to vary for each stock. The “year-effect” parameter
δt was included to allow for year effects common to all stocks; this would include major ocean mortality
changes that affect the survival of chinook salmon during the first two years of ocean life, as well as
regional changes in terrestrial climate that affect all stocks. Above average climate conditions have δt >0,
while below average conditions have δt <0.

We wish to stress the simplicity of the model given by Equations [1], [1a] and [3] (the main model we
use). Eliminating measurement error (ε’t,i in Equation [1a])  combining Equations [1], [1a], and [3], and
rearranging terms generates the following equation:

( ) [ ]ln /, , , , ,R S a m b St i t i i t t i i t i t i= + − − +δ ε [4a]

which is of identical structure to the multiple regression models described in Chapter 4, Section 4.3. The
four major differences between our models and the ones in Chapter 4 are: 1) the inclusion of spawning
enumeration measurement error as an estimated parameter; 2) the specific independent variables (i.e. on
the right side of Equation [4a] used to explain variation in ln(Rt,i / St,i); 3) the use of maximum likelihood
estimation procedures to estimate variances; and 4) the grouping of stocks and years for the purposes of
parameter estimation. Exponentiating both sides of Equation [4a] generates the familiar Ricker equation
plus two additional terms for the year and passage mortality effects:

R Se a b S mi i t i t i t t i= − + + −, , ,ε δ
[4b]
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Results for δt and  mt,i are generally presented as their actual values. Exponentiating  δt and  mt,i expresses
these parameters as fractional factors which in any given year can increase or decrease the recruitment
from that expected by the Ricker parameters alone, that is:

[ ][ ][ ]R S e e ea b S mi i t i t i t t i= − + −, , ,ε δ [4c]

Results are presented for both the parameters themselves (i.e. δt, mt,i) and their exponentiated form, since
the latter can be more easily understood. For example, the percent mortality (PRR = percent reduction in
recruitment) due to in-river passage is computed by:

[ ]PRR e mt i= − −100 1* , [4d]

Similarly, the percent change in recruitment due to year effects (PYE) can be expressed as:

[ ]PYE e t= −100 1* δ [4e]

There is considerable interest in spatial and temporal variations in ocean survival (see Chapters 4 and 12).
Using either Equation [2] or Equation [3] as part of the overall model in Equation [1] entails the following
assumptions with respect to ocean survival: 1) year-to-year variations in climate which effect the ocean
survival of all stocks will be picked up by the year effect δt; 2) random variations among stocks in ocean
survival (due, for example, to different ocean distributions or timing of ocean entry) will be assigned to
the term εt,i in Equation [1], which picks up any unexplained natural variation in recruitment, as well as
recruitment measurement error; and 3) variations among stocks in ocean survival are not systematic
differences between up-river and mid-lower stocks, as regional stock groups.

To examine the sensitivity of the model to the third assumption, we added equation [4] which is a
generalization of Equation [3] to allow for year-effects that differ between the up-river and mid-to-lower
river stocks. When equation [4] is implemented, an additional sum-of-squares term is needed in the
estimation procedure to characterize the correlation between the year-effects in the two stock groups. If
the within-region differences among stocks in year effects are as large as the among-region differences
(i.e. no systematic, significant differences between up-river and mid-to-lower river regions), then these
‘random effects’ will be assigned to the residual variation term εt,i. In such a case, there is no confounding
of passage mortality estimates. However, in the special case where there are systematic differences
between the year-effects of up-river stocks and those of mid-to-lower river stocks (i.e. differences
significantly greater than those within each stock group), then there is confounding of the parameter
estimates for the up-river passage mortality and the region year-effects. At present there is little support
for this special case scenario, but it serves to highlight the importance of obtaining information to
accurately assess among-group differences in ocean survival (see Discussion).

Passage Mortality

The emphasis of this study was the estimation of passage mortality experienced by chinook populations
of the Snake River subbasins up to the John Day dam. Furthermore, emphasis was given to estimation of
that mortality for each of the last twenty brood years (1970–1989). A two-level parameterization scheme
was employed in two alternative ways. We separate dam mortality into two categories, as indicated by the
‘X’s and ‘Y’s in Table 5-2, and refer below to ‘X-type’ and ‘Y-type’ dam mortality. In the first scheme,
we assume that mt,i in Equation [1] is computed by:
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t,i tm  =  X * n +  µ [5]

where n is the number of X-type dams in Table 5-2 (John Day to Bonneville after 1970), X is the dam
passage mortality associated with each X-type dam, and µt is the net dam passage mortality from the
Snake River subbasins to John Day dam (‘Y’ dams in Table 5-2), expressed as an instantaneous mortality
rate for brood years t≥1970. The µ term is a “net” effect mortality estimate because it reflects the overall
impacts of dam passage over the complete life cycle, including direct losses due to trauma at the point of
dam passage, increased “natural mortality” owing to longer smolt residence time in dam reservoirs, latent
mortality due to a weakened condition of smolts, and the benefits or detriments of transportation by barge
of some Snake River smolts down-river to below the Bonneville dam.

The first level of parameterization  (number of X’s in each row of Table 5-2 below) treats mortality as a
process proportional to the number of dams passed by a salmon during their transit to the ocean,
excluding those dams and/or populations treated in the second level. At the second level of
parameterization (Y in Table 5-2) the incremental mortality experienced by upstream stocks is estimated
by µt, which we assume is ≥0. Mortality in any given year for any given population is obtained in Table
5-2 by adding the number of Xs (n in Equation[5]) plus a second level annual term for µt provided at least
one Y is listed. The Warm Springs stock, for example, would currently have n=2 (Bonneville and Dalles
dams) and µt = 0. Johnson Creek, however, would have n=3 (Bonneville, Dalles  and John Day) and an
estimate of µt over five dams (McNary, Ice Harbor, Lower Monument, Little Goose and Lower Granite).
A symbol is first listed on the diagram for a given dam for the year of initial service (lagged two years to
standardize to brood year).

The weakness of the first parameterization scheme is that all the Xs are the same; there is no variation
among dams or years. In the second parameterization scheme, we utilize estimates of passage mortality
from the CRISP and FLUSH models to create more flexible estimates of mortality for the dams and years
with Xs in Table 5-2. This is done in one of two ways. The first approach is to replace (X*n) in Equation
[5] by a passage mortality proportional to that generated by the CRISP/FLUSH models for the X-dams
only, that is:

mt,i = q * m-from-modelt,i + µt [6]

where the “q” is a proportionality constant (estimated in the MLE procedure) to be multiplied by the
passage mortality from CRISP/FLUSH for X-type dams. Inclusion of the proportionality constant allows
the estimation algorithm to include time and spatial trends in the given passage models (that is, mimic the
pattern of mortality changes in CRiSP and FLUSH, scaling up or down as required) without constraining
the estimated mortality to be the actual value predicted by the passage models. The first approach is used
for models 5-8 in the Results (Table 5-4). The second approach is to eliminate µt,i from Equation [6], and
estimate mt,i for all the dams passed by a given stock using the CRiSP / FLUSH estimates, either with the
proportionately constant q (models 9-12 in Table 5-8) or using the actual CRiSP / FLUSH estimates (i.e.
q = 1 in Equation [6]; models 13-16 in Table 5-8).

The CRISP/FLUSH model estimates include both dam-induced effects within the river system plus a
background level of “natural” mortality within the river passage. Some natural mortality would be
expected even without any dams along the Columbia River, likely in the 0%-20% range for passage
between John Day dam and Lower Granite reservoir (see Chapter 6). Thus, some reduction of the
CRISP/FLUSH estimated mortalities (in the 0.0 to 0.2 range) would be needed to make them strictly
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comparable to the µt,i estimates, which only consider the incremental mortality caused by downstream
passage.

Table 5-2: Types of passage mortality estimates. (For the simplest models X = fixed estimate of
mortality/dam; Y = annually varying estimates of mortality due to passage through 5 dams;
BON = Bonneville; TDD = Dalles; JDA = John Day; McN = McNary; IHR = Ice Harbor;
LOMO = Lower Monumental; LGS = Little Goose; LGR = Lower Granite). More complex
models replace the “X”s with estimates either proportional or equal to CRiSP/FLUSH
mortality estimates.

D A M S

Brood Year BON TDD JDA McN IHR LOMO LGS LGR

1952 - 1954 X X
 1955 - 1958 X X X
 1959 - 1965 X X X X
 1966 X X X X X
 1967 X X X X X X
 1968 -1969 X X X X X X X
1970 - 1972 X X X Y Y Y Y
1973 - present X X X Y Y Y Y Y

Model (1) together with equation (3) for the a coefficients contains the following parameters that need to
be estimated: these are the fundamental parameters δt, ai, bi and mt,i, and the “true” spawning population
abundance’s (in logarithms given by the xt,i).

Likelihood Function and Bias Correction Procedure

The complete likelihood function is made of two parts: the normal errors for the εt,i and the normal errors
for the ε’t,i To obtain maximum likelihood estimates (MLE) for all parameters in the complete likelihood
problem, one minimizes the negative log-likelihood function, which reduces to minimizing the following
sum-of-squares:

SSQ =    +    ’t,i
2

’ t,i
2∑ ∑ε λ εε [7]

where the variance ratio λε’ = 
σ

σ
ε

ε

2

2
'
. Spawner-measurement errors appear to be rather low; a

comparison of redd counts to weir counts of females for selected Idaho streams (Lemhi River, primarily)
show a coefficient of variation of about 24% in the redd measurements (Appendix 5-1). The likelihood
function for the model which includes regional year-effects (i.e. Equation [1] with Equation [4] for at,i)
contains an additional sum of squares term:

[ ]SSQ t i t i region t region t region= + +∑ ∑ ∑ −ε λ ε λ δ δε, ' , , ,
2 2

1 2

2

[7a]
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where:

λregion = variance ratio similar to λε’

δt,region1 = year-effect for mid-lower river stocks
δt,region2 = year-effect for up- river stocks

The maximum likelihood estimates were obtained by application of a Marquardt nonlinear minimization
routine.

A Monte Carlo bootstrap procedure (Efron 1979, 1981) was then applied to the maximum likelihood
estimates to produce median unbiased estimates. The bias appears to be rather minor in the results
reported later (usually less than 10% of the estimated quantity) and thus a first-order procedure, such as
the bootstrap procedure, appears to be a reasonable approach in such cases, although the method may not
work well with other data sets which exhibit larger bias (C. Walters, J. Collie; personal communication).
The procedure involves construction of a number of simulated data sets with variances obtained by the
MLE of original data. In our case we use a parametric bootstrap method in which normally distributed
error terms are added to simulated populations in model (1); the variance of the error terms was set equal
to the unbiased variance estimate, SSQ/(n-p), for the no-spawner-measurement error model (n is the
number of data points and p is the number of parameters estimated). A similar variance estimate was used
in the spawner-measurement error model, except that SSQ components were partitioned to obtain the
recruitment error variance (εt,i in Equation [1]). The spawner-measurement error variance (σε’

2 in
Equation [1]) was set to (.242) based on actual measurements of spawner measurement error (Appendix 5-
1). MLE-estimated variance for spawner measurement error was actually lower than the measured value.
Median estimates from the bootstrap trials provide an estimate of bias for the original MLEs. These bias
estimates were used as an additive correction to obtain median unbiased estimates; the same additive
correction was applied to the bootstrap percentile estimates. In the bootstrap trials, a total of 500
simulated data sets was generated for two of the better models

Ranking Alternative Models

Two criteria are evaluated for each of the model fits to data, the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) (Akaike 1973, Kass and Raftery 1994). These are both
measures of the relative fit of models to date with better model fits corresponding to lower AIC and BIC
scores. The AIC, given, by the equation

AIC  =  -2ln(Likelihood) +2p [8]

and the BIC, given by the equation

BIC  =  -2ln(Likelihood) + p*ln(k) [9]

are both based on asymptotic properties of the likelihood function (p is the number of parameters
estimated and k is the number of “observations,” where we count observation number by the number of
SSQ components. In Equation [7], for example, there are twice as many SSQ components as data points.
Note that both the AIC and BIC use twice the log-likelihood and, hence, both are also related to the
asymptotic likelihood ratio tests in which nested models can be tested via classical hypothesis testing (due
to the fact that twice the log-likelihood is asymptotically a chi-square statistic (Mood, Graybill, and Boes
1974). Given two models, say M1 and M2, where M2 is the same as M1, except that M2 has k additional
parameters estimated, then we can test the null hypothesis that the simpler M1 is true versus the
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alternative that the more complex M2 is true by forming a rejection criterion based on a chi-square
statistic with k degrees of freedom. Both the AIC and to a much greater extent the BIC correspond to a
very small rejection criterion (probabilities below .005) for alternative nested models with 21 or more
additional parameters in the larger model (as we have in this paper). That is, neither the AIC nor BIC
criteria will reject a simple model in favor of a more complex model unless there is a very substantial
improvement in SSQ (one significant at p < 0.005).

There are differing perspectives on which criterion should be used to select models, or whether specific
models should in fact be “selected” in preference to others. The AIC is a conservative method of ranking
such nested models. However, there are arguments that AIC results in selecting models with too many
parameters, and that the BIC is more appropriate because it forms an approximation to Bayes factors, (the
ratio of probabilities of competing models) which is especially important when forecasting is to be done
with the selected model. There are counter-arguments to that conclusion, as the BIC has been found to
select a simpler incorrect model over the correct more complex model, and that theoretical justification
for BIC over AIC depends on the details of changes in the model as n increases asymptotically. From a
Bayesian perspective, Gelman et al (1996) argue against model selection altogether, as the alternative
models represent alternative hypotheses, and that we would not want to discard the alternative hypotheses
through model selection. They argue that what is needed is a general enough model that contains the
alternatives as special case solutions so that posterior probabilities calculated from such a general model
reflect the relative credibility of alternative hypotheses. A reasonable compromise would be to only reject
models which are grossly less supported by AIC and BIC, but reserve judgment on the remaining ones.

5.4 Testing of Models with Simulated Data

The purpose of testing the models is to examine the biases that arise from using a model with the wrong
set of assumptions. If the model is consistent in assumption with the data then, as long as the bias is not
too large, the bootstrap procedure described above will adjust the estimate to correct for bias. In
particular, we wanted to see if the model using Equation [2], where most of the populations shared a
common Ricker a parameter, would perform well even if simulated data contained the assumption that all
the a’s differed. We also wanted to examine the effect of ignoring spawner-measurement error in the 25%
coefficient-of-variation range. Therefore, we generated simulated recruitment using the model in
Equations [1] and [3], together with an assumed passage mortality mt,i, and then attempted to estimate this
mortality using more simplified versions of the model (e.g. constant a for all streams, no measurement
error, ‘X’ dam mortality set to 0).

Testing of the models involved the construction of a simulated data set and then MLE estimation of
parameters for a given model with that data set. The process of simulation/estimation was repeated 100
times in a Monte Carlo procedure. Results are summarized in Table 5-3 below, categorized by model type
and simulated data type; the categories do not enumerate all possible combinations but it does show
model performance for a wide range of combinations. The range of alternative models was limited to
those of the form given by the Ricker model in Equation [1], but with either spawner-measurement error
ignored (or not), or with separate Ricker a values estimated (or not), and with the ‘X’ dam mortality
(Table 5-2) estimated (or set to 0).

Simulated data were designed to mimic some variations on the Chinook salmon/ Columbia River system.
The simulated data uses the same number of years and populations as given in an earlier version of the
spawner and recruit data set (the earlier version covered the same stocks and years as the present one with
the exception that there was no 1990 brood year data and the John Day stocks were combined as a single
stock). In the simulation, dams operate for the same number of years and areas as in the actual system, but
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dam mortality is set to either 0.01, 0.10, or 0.15 per dam. Thus the total mortality for passage through the
eight dams present from brood year 1973 is 0.08, 0.80, or 1.20 respectively. Population simulations were
initialized with a set of fundamental parameters found from one MLE set of parameter values, including
population-specific ai, bi, year-effects δ t (except in limited runs where we set δ t = 0), and “true”
spawning population abundances set equal to the observed S t,i. (These parameter values and S t,i were
taken from the earlier data set.) Simulated spawner-measurement error (ε’ in Equation [1a]) was set to a
24% coefficient of variation. Recruitment error (ε in Equation [1]) was set to a 35% coefficient of
variation. Both ε and ε’ were drawn from normal distributions for each simulation. As in the actual MLE
runs (Section 5), this test did not incorporate the feedback of recruits becoming spawners; the observed
spawning data were considered to be true regardless of the assumed dam mortality.

A useful summary statistic with which to view the results of the simulated trial is the estimated bias in
dam mortality —  the total passage mortality from the Snake River subbasins through all eight main-stem
dams. Table 5-3 refers to this total passage mortality as mt,10, the value for the tenth stock (Marsh Creek;
Table 5-2). The tenth stock was randomly selected as mt is the same for stocks 7-13. The estimated bias is
assessed using the median of all yearly estimates of mt,10 for the years where all eight dams were
operational (1973-1989 brood years). That is, we calculated the average of the 100 MLE estimates of mt,10

for each year and then compared the median of those averages to the true value (i.e. the dam mortality
assumed in the simulation) to calculate bias. A positive bias indicates that the estimation procedure over-
estimates mortality compared to the true value. The standard deviation for mt,10 was also calculated from
the 100 simulated/estimation trials; the median of all yearly estimates is included in Table 5-3.

The trade-off between bias and variance is clearly illustrated above in comparisons of scenarios (7,9) or
(8,10), where lower variance, but higher bias results are obtained by making the incorrect assumption that
the Ricker a parameters are the same for populations 2-11. Inclusion of spawner measurement error
slightly deteriorates performance, as seen by comparison of (7,8) or (9,10). The bias appears relatively
constant across a wide range of true dam mortality, as seen by comparison of (7,11,13) provided first-
level dam mortality is an estimated parameter. If first-level dam mortality is set to zero then the bias is
negative, rather than positive, as seen by comparison of (3,7), and lower variances can be offset by very
large biases, as seen by comparison (1,9). With first-level dam mortality set to zero in spite of significant
total 8-dam mortality (1, 3, 5), the procedure is unable to generate enough mortality from the 5 “Y” dams
in Table 5-2, and therefore shows a significant negative bias (underestimate).

Table 5-3: Example results of model testing. Parameter mt,10 is estimated total passage mortality through
8 main-stem dams.

Model Estimated Simulated Data Type Parameter Estimate

Different
a?

Spawner-
Measurement

Error

“X” Dam
Mortality Set

to 0?
Total 8 Dam

Mortality
Year-effect
Included?

Bias
mt,10

Standard
Deviation of

mt,10

1. Y N Y 0.8 N -0.53 0.22
2. Y N Y 0.08 N  0.02 0.16
3. N N Y 0.8 N -0.19 0.25
4. N N Y 0.08 N  0.09 0.17
5. N N Y 1.20 N -0.34 0.24
6. N N Y 0.8 Y -0.19 0.25
7. N N N 0.8 Y  0.12 0.27
8. N Y N 0.8 Y  0.16 0.28
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9. Y N N 0.8 Y  0.08 0.44
10. Y Y N 0.8 Y  0.14 0.51
11. N N N 0.08 Y  0.12 0.19
12. Y N N 0.08 Y  0.10 0.19
13. N N N 1.20 Y  0.12 0.27

A selected number of the scenarios were further examined to investigate bias of the median mt,10 from
each simulated year, instead of the average mt,10 of the 100 simulations. The yearly median of those
estimates is nearly unbiased for scenarios (9) and (10), as estimated bias is respectively +0.01 and +0.05.
No such improvement was found for scenarios (7, 8) in which the Ricker a parameter is assumed to be the
same for populations 2-11; here the medians were just as biased as the means.

Based on the results of the simulation trials, (in particular, the bias associated with estimates of true dam
mortality of 0.8 or greater), we conclude that the lowest bias models are the ones which assume no
spawner-measurement error, include first-level dam mortality as a parameter to estimate, and can include
either of the alternatives that the Ricker a parameter is different or the same (e.g. rows 7, 9, 13).

5.5 Result of Application of the Models to Spring Chinook

A set of 37 spawner-recruitment (S-R) models were applied to the Chinook spawner-recruitment data
series covering the thirteen populations described above in Table 5-2. A summary of results from those
model runs is given in Table 5-4. The best (that is lowest) AIC scores occurred for models where µ was
estimated each of the years (models 1,3,5-8). Among those best AIC scored models, comparable AIC
values occur with both of the two alternative parameterizations for first-level dam effects, as described
earlier. The best (that is lowest) BIC scores occurred for models with fewer parameters (particularly
models 33 and 36), although not those so simple as to omit year-effect parameters. Simple
parameterizations for µ were favored by the BIC criterion, either as µ proportional to water transit time
(WTT), as in model 36, or with total passage mortality m proportional to passage model values from
CRISP or FLUSH (models 31-34). The WTT variable is the amount of time (in days) that is required for
water to pass through the Columbia River system from the head of the Lower Granite reservoir to
Bonneville dam, on average during the spring migration period.
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Table 5-4: Results of applying 37 different models to stock and recruitment data. Shaded models are compared in Table 5-6. “Top models” have
AIC and BIC values below the median for all models.

Spawner- Different "Top Distinguishing Features Total Number of Number of Akaike Bayesian Average Average Production
Model Measure "a"? Model" Sums of Parameters  Likilihood Information Information µ Ricker "a" index:

Number Error? Squares Estimated Components Criterion Criterion mortality Parameter =a-µ
(AIC) (BIC)

1 N Y *  Equation (4) passage mortality 111.88 86 406 800.7 1145.2 1.44 2.65 1.22
2 Y Y  Equation (4) passage mortality 92.14 492 812 1520.9 3833.0 1.26 2.45 1.19

3 N N *  Equation (4) passage mortality 120.07 75 406 807.4 1107.8 0.82 1.84 1.02
4 Y N  Equation (4) passage mortality 96.3 492 823 1553.4 3872.2 0.81 1.84 1.03
5 N Y * X passage mortality factor proportional to CRISP T1 111.49 86 406 799.3 1143.8 1.07 2.12 1.05
6 N Y * X passage mortality factor proportional to CRISP T2 111.47 86 406 799.2 1143.7 1.07 2.13 1.06
7 N Y X passage mortality factor proportional to FLUSH T1 113.09 86 406 805.0 1149.6 1.02 1.97 0.95
8 N Y X passage mortality factor proportional to FLUSH T2 113.09 86 406 805.0 1149.6 1.02 1.97 0.95

9 N Y "m" passage mortality rate proportional to CRISP T1 149.27 65 406 875.7 1136.1 0.59 1.95 1.36
10 N Y "m" passage mortality rate proportional to CRISP T2 157.06 65 406 896.4 1156.8 0.02 1.53 1.51

11 N Y * "m" passage mortality rate proportional to FLUSH T1 141.49 65 406 854.0 1114.4 0.99 2.03 1.04
12 N Y "m" passage mortality rate proportional to FLUSH T2 152.67 65 406 884.9 1145.3 0.54 1.81 1.27
13 N Y "m" passage mortality rates = CRISP T1 values 153.19 64 406 884.3 1140.7 1.00 2.26 1.25
14 N Y "m" passage mortality rates = CRISP T2 values 179.72 64 406 949.1 1205.5 0.48 2.04 1.56
15 N Y "m" passage mortality rates = FLUSH T1 values 155.02 64 406 889.1 1145.5 1.90 2.51 0.61
16 N Y "m" passage mortality rates = FLUSH T2 values 164.07 64 406 912.1 1168.5 1.40 2.29 0.88
17 N Y "m" = X*(total number of dams passed) 149.99 65 406 877.7 1138.1 1.44 2.68 1.24
18 N Y * (same as #13 CRISP T1), except exclude 1971 brood year 147.62 63 393 856.3 1106.6 1.00 2.24 1.24

19 N Y (same as #14 CRISP T2), except exclude 1971 brood year 174.02 63 393 920.9 1171.3 0.48 2.02 1.55
20 N Y * (same as #15 FLUSH T1), except exclude 1971 brood year 141.95 63 393 840.9 1091.2 1.90 2.50 0.60
21 N Y * (same as #16 FLUSH T2), except exclude 1971 brood year 146.86 63 393 854.2 1104.6 1.40 2.27 0.87
22 N Y region year effects; "m" as in #1; Lambda(basin)=.01 107.12 118 438 861.9 1343.6 1.43 2.65 1.22
23 N Y region year effects; "m" as in #1; Lambda(basin)=1.0 108.64 118 438 868.1 1349.8 1.44 2.65 1.22

24 N Y region year effects; "m" as in #13; Lambda(basin)=.01 106.51 96 438 815.4 1207.3 1.00 2.35 1.35
25 N Y region year effects; "m" as in #13; Lambda(basin)=1.0 118.62 96 438 862.6 1254.5 1.00 2.32 1.32
26 N Y region year effects; "m" as in #14; Lambda(basin)=1.0 126.42 96 438 890.5 1282.4 0.48 2.16 1.68
27 N Y region year effects; "m" as in #15; Lambda(basin)=1.0 119.32 96 438 865.2 1257.1 1.90 2.48 0.59
28 N Y region year effects; "m" as in #16; Lambda(basin)=1.0 121.62 96 438 873.6 1265.4 1.40 2.33 0.92
29 N Y "m" = X*(total number of dams passed); no year-effect 299.48 27 406 1082.4 1190.6 1.88 3.04 1.16

30 N Y no year-effect; "m" as in #1, FLUSH T1 289.89 27 406 1069.2 1177.4 1.32 2.02 0.69
31 N N * "m" passage mortality rate proportional to CRISP T1 154.17 54 406 866.8 1083.2 0.55 1.89 1.34

32 N N "m" passage mortality rate proportional to CRISP T2 167.17 54 406 899.7 1116.1 0.14 1.63 1.49
33 N N * "m" passage mortality rate proportional to FLUSH T1 149.53 54 406 854.4 1070.8 0.71 1.85 1.14
34 N N "m" passage mortality rate proportional to FLUSH T2 158.23 54 406 877.4 1093.7 0.53 1.77 1.24
35 N N "m" = X*(total number of dams passed) 158.56 54 406 878.2 1094.6 0.57 1.94 1.37
36 N N * µ passage mortality rate proportional to WTT 145.82 55 406 846.2 1066.6 0.79 1.78 0.99
37 N Y µ passage mortality rate proportional to WTT 136.28 66 406 840.8 1105.2 1.34 2.52 1.19

Average across all models 144.59 94 433 909.2 1306.2 1.03 2.17 1.14

Median value 145.82 65 406 868.1 1145.3 1.00 2.13 1.19
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A subset of eight of the models are shown in Figure 5-1, typical of ones for which both a year-effect and a
yearly µ parameter were estimated. Four of the models use the first parameterization of passage mortality
given above (i.e. equation [5]; constant mortality per project) and four of the models use the second
parameterization (i.e. equation [6]; per project mortality proportional to CRISP/FLUSH estimates). The
first four models (models 1-4 in Table 5-4) are given by Equation [1], with all possible binary choices to
the two model attributes (include/not include spawner-measurement error) and (Ricker a parameter
different for each stock / same for 12 stocks). A value of λ ε = 2.0 was used in the spawner-measurement
error models because that corresponds approximately to an assumed 24% coefficient of variation in
spawner-measurement error (see Appendix 5-1). Varying measurement errors by stream based on PATH
participants’ judgments of the relative accuracy of spawning enumeration methods (Marmorek 1995)
changed the average µ estimate by only 0.006 in earlier tests of one of the better models with preliminary
data.

The second group of four models in Figures 5-1 (models 5-8 in Table 5-4) use the second (more variable)
passage mortality parameterization, one for each of two versions of the CRISP passage model and two
versions of the FLUSH passage model. The passage models are embedded in Equation [1], with the
assumption of no spawner-measurement error and that the Ricker a parameter is different for each of the
stocks. The final model, number 37 of Table 5-4, is included in Figure 5-1 because of its low BIC score
and because it contains a simplified passage model: µ proportional to WTT. This model has a slightly
higher BIC score than model 36, but was chosen because it includes different Ricker a parameter values
(shown in the simulation tests to perform more accurately).

All eight S-R models gave similar estimates of time trends in both µ (passage mortality from Snake River
sub-basins to John Day Dam) and in δt (year-effect parameter) (Figure 5-1). The time trend in µ is one of
a cyclical high to moderate mortality throughout the 1970s followed by a four-year period of low
mortality (1980-1983) then a return to a stable but slightly cyclical mortality through the latter half of the
1980’s and an upward spike in 1990 (Figure 5-1a). Results are also given in Figure 5-1a on the average of
the CRISP and FLUSH mortality estimates for their four configurations (discussed in detail below). As
seen in Figure 5-1, the average passage model estimates of µ generally pass through the µ estimates of the
eight S-R models with three notable exceptions: the spiked mortality indicated by the passage models for
brood year 1971 is not present in any of the S-R models; secondly, the mortality indicated by the passage
models for brood years 1980-1983 does not show the precipitous reduction in mortality (increase in
survival) indicated in all the S-R models; and thirdly, the increased mortality in all eight models in 1990
is above the average passage model. (A more detailed examination of the four-year high survival result in
1980-83 was made in of our previous report. We had wanted to see if the reduction in mortality for the
upriver populations was due to real increases in recruitment or just due to decreases in spawning
population; both occur. The decrease in spawning populations was also observed on the lower river
populations, but they did not experience the increase in recruitment that was seen in upriver populations.)
A moderate long-term cycle is shown in Figure 5-1b for estimated “year-effects” indicating a shift in
climate mortality regimes from a generally high positive anomaly sequence for the 1952-1968 brood
years followed by generally negative anomalies for the 1970-1989 brood years.

Confidence Intervals for µµ  and δδ

Results of the bootstrap procedure are shown in Figure 5-2 for two of the better models (model numbers 1
and 3), as judged from both the simulation trials and the two information criteria in Table 5-4. Emphasis
is given to the top panel of that Figure because of its lower bias in the simulation trials, but the other
panel shows consistent results. Bias of the MLE was generally small as an estimator of median µ (range
from +.008 to +.06 for the two models’ time-averaged µ). The MLE model’s estimates of “a” and “X” are
correlated; runs with higher productivities (e.g. “a”s estimated independently) require higher estimated
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dam mortalities to match the spawning estimates. Bias-corrected estimators are used for all model results
given in this Section. Other results are listed in Table 5-5 below. (Appendix 5-I of our previous draft
included several graphs from the second model in Table 5-5, including graphs by population of predicted
and observed recruitment and spawners displayed in several alternate formats. We didn’t include an
updated version because results are quite similar to those given earlier for common years and stocks.)

Table 5-5: Estimated parameters for Ricker model for four model types. Also listed are 90% confidence
intervals for the first model type and first-level per dam mortality rates of “X” type as
described in the text.

Model Type
Measurement error N Y N Y N
"a" differ, some Y Y N N Y

90%
Subbasin Ricker "a" values Confidence Interval
Wind R 1.40 1.36 1.36 1.34 1.05 1.74
Klickitat 1.72 1.71 1.88 1.88 1.41 2.00
Warm Sp 2.88 2.73 1.88 1.88 2.39 3.31
John Day Mainstem 2.49 2.39 1.88 1.88 2.01 2.96
John Day Mid-fork 2.19 2.07 1.88 1.88 1.74 2.65
John Day North-fork 2.23 2.06 1.88 1.88 1.64 2.78
Imnaha 3.08 2.74 1.88 1.88 2.47 4.07
Minam 3.15 2.90 1.88 1.88 2.61 4.12
Bear Val 3.10 2.81 1.88 1.88 2.50 4.05
March Cr 3.01 2.69 1.88 1.88 2.42 3.95
Sulphur C 3.29 2.96 1.88 1.88 2.72 4.22
Poverty Fl 2.92 2.70 1.88 1.88 2.34 3.92
Johnson F 3.00 2.75 1.88 1.88 2.43 3.98

Ricker "b" values (x1000)
Subbasin
Wind R 3.52 3.34 3.50 3.46 2.16 4.90
Klickitat 2.65 2.78 3.12 3.60 1.95 3.56
Warm Sp 1.15 1.01 0.39 0.30 0.66 1.66
John Day Mainstem 2.96 2.82 2.71 2.62 1.95 3.78
John Day Mid-fork 1.41 1.21 1.70 1.59 0.93 1.86
John Day North-fork 0.46 0.40 0.55 0.52 0.22 0.65
Imnaha 0.69 0.53 0.65 0.57 0.46 0.90
Minam 1.22 1.07 1.08 0.95 0.87 1.54
Bear Val 0.60 0.49 0.53 0.47 0.34 0.81
March Cr 1.01 0.70 1.00 0.85 0.52 1.40
Sulphur C 1.94 1.51 1.46 1.23 1.36 2.63
Poverty Fl 0.66 0.65 0.70 0.71 0.48 0.86
Johnson F 1.95 1.80 1.98 1.89 1.33 2.53

Dam mortality rate
"X" per dam 0.264 0.244 0.033 0.050 0.138 0.442
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Comparison of µµ with Upriver-Downriver Differences in ln(r/s)

Empirical examination of some of the features of the spawner-recruitment data gives a better
understanding of the time trends in mortality estimates. In Figure 5-3 we show ad-hoc estimates of
average standardized mortality of recruits for upriver and down-mid river populations. The ad-hoc
estimates were obtained by subtracting the time series average ln(R/S) from each year’s ln(R/S) for each
population and then averaging those across populations in the upriver (or alternatively down-mid river)
sub-basins. This kind of ad-hoc technique is imperfect, but it does show some interesting features. It also
permits a rough comparison between our analyses and those of Chapter 3. The µ passage mortality from
our “best” S-R model nearly mirrors the difference between average ln(R/S) for upriver versus down-mid
river populations in most years. For example, the spikes upward in µ for recruits born in brood years 1972
and 1975 mirror the spikes downward in upriver survival relative to the average survival experienced
during those years by the down-mid river populations. The low estimates of µ for 1980-1983 brood years
reflect the better than average survival of upriver stocks compared to the survival of low-mid river
populations (recall that µ is kept ≥0, otherwise it would be negative during this period). The very large
upward spike in passage mortality indicated for brood year 1971 recruits by the passage models (Figure 5-
1) is not supported by the changes in survival of the upriver populations relative to the down-mid river
populations. The upriver recruits of brood year 1971 had a lower survival, but not as low as experienced
by the 1972 or 1975 brood years. Details on survival trends in each of the populations show that brood
year 1972 was the poor year, not 1971, especially for the Bear Valley, Sulphur Creek, Poverty Flats, and
Johnson Flats populations (Appendix 5-I, previous report). The ad-hoc estimates fail to account for the µ
estimates obtained in the latter 1980s, but they do reflect the drop in survival of up-river stocks in 1990.

Comparison of µµ with CRISP and FLUSH Based Passage Mortalities

Two transport assumptions were applied to CRiSP and FLUSH which led to four estimates of passage
mortality (Figure 5-4). The transport survival assumptions in Figure 5-4 are based on the ratio of survival
of transported fish to control fish left in river (transport:control ratio or TCR) in selected years of
experiments, multiplied by the in-river survival estimated by each passage model for those years.
Transport model 1 (T1) assumes that survival varies with water transit time; the slope is anchored by TCR
values of 1.0:1 in 1986 (a high flow, low WTT year) and 3.0:1 in 1977 (a low flow year). Transport
model 2 (T2) assumes fixed survival, calculated based on a TCR of 1.6:1 from 1986. FLUSH clearly
estimates much lower transport survival than CRISP (Figure 5-4).

The passage models provide estimates of passage mortality for Spring Chinook for their entire seaward
migration. We used those passage mortalities to estimate m, as described in Section 5.3. We completed
several sets of four model runs (corresponding to the two transport models for each of the two models
CRISP and FLUSH). The three passage mortality scenarios (CRISP T1, FLUSH T2, FLUSH T1) are
more similar to each other than the CRISP T2 scenario, as seen in Figure 5-5 and by results listed in Table
5-4. In each group of four scenarios listed in Table 5-4 where m is based on one of those passage models,
(that is models 9-12, models 13-16, models 18-21, models 25-28, models 31-34), the CRISP T2 scenario
had the worst (largest) AIC and BIC score. Closer inspection, however, shows that the year of comparison
affects which of the passage model scenarios most closely match the estimates of µ from one of the better
empirical models (such as model number 1 where annual µ values are estimated). The CRISP T1 and T2
models (numbers 5 and 6 of Table 5-4) produced the best AIC score of all models when CRISP estimates
are used as scalars to estimate ‘X-type’ dam mortality (i.e. John Day, the Dalles, Bonneville), together
with the MLE estimate for other dams (Equation [6]).  Note that transportation is not part of the passage
model mortality estimates for the ‘X-type’ dams.



Chapter 5

5-16

Table 5-6 provides some quantitative measures of comparison with the S-R model number 1 of Table 5-4
(shown in Figure 5-5). The CRISP T1 estimates produce the best overall fit in terms of lowest SSQ in
criterion (5), but that result can be altered (criterion 7) to favor the FLUSH T1 estimates if brood year
1971 is not fitted  —  a year in which estimates are strikingly different from those of the S-R model
(Figure 5-5). The CRISP T2 estimates of µ are not within the 90% CI of the µ estimates from the S-R
model as often as the other passage model estimates and it has considerably larger absolute deviations
(criteria 1,2). However, that result has to be tempered by the fact that CRISP T2 produces closer µ
estimates during the lower mortality brood years of 1980-1983. Average passage mortality obtained from
the FLUSH passage models are larger than the average µ from the S-R model while the CRISP passage
models are smaller than the average µ, as seen in criterion (4). The average deviation is smallest for the
CRISP T1 and FLUSH T2 models. We have not adjusted the CRISP or FLUSH estimates by subtracting
pre-dam natural mortality (in the 0.0-0.2 range), which could alter comparison results slightly (likely
improving the fit of FLUSH to the S-R data, and reducing the fit of CRiSP).

Table 5.6: Various indicators of passage model performance. (Models 13-16 vs. Model 1 of Table 5-4
for rows 1-7; models 18-21 for row 8.)

Criterion CRISP T1 CRISP T2 FLUSH T1 FLUSH T2

1. % of µ within 90% CI 52% 33% 57% 57%

2. Average absolute deviation from median estimate 0.75 1.12 0.73 0.72
3. Median absolute deviation from median estimate 0.61 1.07 0.58 0.63
4. Average deviation from median estimate -0.34 -0.87 0.55 0.06

5. SSQ given passage model µ but other parameters estimated 153.19 179.72 155.02 164.07

6. AIC 884.3 949.1 899.1 912.1
7. BIC 1140.7 1205.5 1145.5 1168.5
8. SSQ as in (5.), omitting 1971 brood 147.62 174.02 141.95 146.86

Regional year-effects were investigated in model numbers 22 to 28. All of the BIC scores are
substantially poorer for those regional models as compared to ones without region -specific year-effects
(Table 5-4). The AIC scores are also poorer for models 22 and 23 than for mode1 1, one of the better
empirical models. However, the CRISP and FLUSH based models do show lower AIC values when
region-specific year effects are included, perhaps because this gives more flexibility to accommodate
upstream-downstream differences in survival (models 24-28 vs. 13-16). Passage mortality rates are very
similar between those two types of models, whereas the regional models estimate a slightly larger average
Ricker a parameter. However, year-effects are strongly supported for inclusion in the models, as seen by
the high AIC and BIC scores for model numbers 29 and 30 in which no year-effect was included.

Using model 1, we examined estimates of µ, (up-river net passage mortality), and δ, (year-effects) for
correlations with other variables. In Figure 5-6, we show a graph of µ estimates versus WTT; there is a
significant positive correlation (r = .58, p<0.01) between those variables. The correlation is still
significant without the influential 1975 brood-year (r=0.45, p<0.05). We separated the 1970-79 and 1980-
90 periods to assess if differences in power system management or other factors may have affected the
correlation of WTT and µ. The 1970s showed a weaker correlation (r =0.58, p=0.08; without the 1975
datum, r=0.06 p=0.87) than the later period (r =0.68, p=0.02). However, an Analysis of Covariance with
WTT as the covariate showed no significant difference between the 1970s and 1980s (p=0.623). Some
pairs of years with very similar WTT (e.g. 72-70; 74-80; 89-83; 90-86) had very different values for µ.
This indicates that other factors besides WTT influenced the value of µ (Figure 5-6a) in these years.
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The δ year -effect reflects common factors affecting survival of all stocks. We therefore selected two
general climate indicators applied by Charlie Paulsen in Chapter 4, the NPI and the Upwelling Index, to
see if they were correlated with δ. The NPI showed low correlations in all cases when matched to the
first, second, and third ocean winter (i.e. r =0.08, 0.26, 0.33 respectively). The Upwelling Index was also
not correlated with δ (r =-0.09). Interestingly, Dr. Randall Peterman (unpub. data) found that the
standardized residuals of Bristol Bay sockeye survivals were negatively correlated with δ (r =-0.51). This
is consistent with the hypothesis that ocean conditions in the Northeastern Pacific vary inversely with
those off the coast of Oregon and Washington.

Correlations are not significant in either the mid-panel of Figure 5-6(δ versus WTT; r =-0.15) or Figure
5-7 (µ versus δ;r =-0.24). The absence of any correlation between δ and WTT suggests that WTT is not a
good indicator of whatever common factors are driving the year effect. The lack of correlation between µ
and δ (Figure 5-7) counteracts the potential concern that the estimates for these two parameters might be
unstable and “trading off” against each other. Rather, the passage mortality and year effects appear to be
largely independent. The only obvious pattern in Figure 5-7 is that the brood year  with the best year
effect (1983) also had a low passage mortality µ, and the brood year with the worst year effect (1990) also
experienced high passage mortality.

The wide range of alternative hypotheses regarding the magnitude of up-river net passage mortality µ and
Ricker “a” parameter are supported by the results in Table 5-4. A range in average µ from 0.55 to 1.90
(mean of 1.09) occurs for the “top models” in Table 5-4, where we define the “top models” to be those
models for which both the AIC and BIC are below the median for all 37 models. This corresponds to a
range of 42-85% [100 *(I - e-µ) mortality due to downstream passage from Lower Granite to John Day
dams, over the entire life cycle (mean of 66%). There were 12 models which fit in the top model
category: models 1,3,5,6,11,18,20,21,31,33,36,and 37 of Table 5-4. These models’ average Ricker “a”
values range from 1.78 to 2.65 (mean of 1.92). They have a smaller range in average production index a-
µ, from 0.60 to 1.34 (mean of 1.06). The smaller range in average production reflects the correlation
between estimates of µ and a , which is present not only in the results of Table 5-4 , but also was seen in
the bootstrap simulations done for models 1 and 3. Higher passage mortality estimates require higher
production values to match observed patterns in S and R (Figure 5-8).

5.6 Discussion

Implications of Retrospective Analysis

We were encouraged by how closely the most empirical of the MLE passage models (model 1 of Table 5-
4) gave passage mortality estimates (based on S-R data) that generally matched those produced by the
more mechanistic passage models (particularly CRISP T1, FLUSH T1, and FLUSH T2). In general, those
MLE estimates of mortality are intermediate between the CRISP and FLUSH estimates. Better agreement
between the mechanistic and MLE passage models was achieved by building a model in which one scales
the mortality estimates from CRISP and FLUSH. On the other hand, even the simple explanatory
variable, water transit time, could be used to model passage mortality in a high performance model (as in
models 36 and 37 of Table 5-4).

The influence of in-river studies on the 1971 brood year (conducted on migrants in 1973, a low-flow year)
has been profound in the debate over the effects of dams on mortality of smolts. Yet our results show that
the 1973 study results are not consistent with observed returning recruits from the 1971 brood year. If we
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assumed for a moment that the high mortality rate of FLUSH for the 1971 brood year was correct (i.e. a
passage mortality µ which is 3.4 above the µ given by the S-R model) then we must have had an
exceptionally strong year-class for the brood year 1971 in terms of their natural survival. In particular, we
would require that observed recruitment survival rate, ln(R/S), to be roughly 3.4 above the S-R model’s
average survival rate (i.e. the rate consistent with the S-R model’s average passage mortality). Figure 5-3
gives a rough idea as to how strong that year-class would need to be: adding 3.4 to the standardized
ln(R/S) for brood year 1971 would place it about 1.0 above the maximum standardized survival for any
other brood year for the upriver stocks. On the other hand, the high passage mortality for the 1975 brood
year (conducted on migrants in 1977, another low-flow year) is generally consistent between the passage
models and the S-R model and also consistent with in-river studies conducted that year.

An alternative explanation for our results is that the decline in survival of up-river vs. down-river natural
stocks was due to a marine mortality factor that differentially affected up/down river stocks in a large
enough way to coincide with and account for the estimated dam mortality. The models which include
regional year-effects (models 22-28) generally performed worse than the empirical models which exclude
this alternative hypothesis (e.g. model 1). We have not been able to find any analyses clearly indicating
systematic, regional differences between up-river and mid-to-low river stocks in ocean distribution or
mortality. Coded wire tag data from five spring chinook hatcheries, discussed in Section 4.5 of Chapter 4
(Paulsen 1996), do show significant differences among all stocks in ocean distributions, but provide no
indication that the differences between up-river and mid-to-low river stocks are larger than the differences
within each stock group. PATH participants pointed out a number of other problems with the CWT data
analyzed by Paulsen (1996); these were summarized by Marmorek (1996). The multivariate analyses in
Chapter 4 (Table 4.6) show some differences between stock groups in the variables which correlate with
ln(R/S), but there are also many differences within each stock group (Table 4.1.1). Though it would be
valuable to obtain better estimates of among-region differences in ocean distribution and survival of wild
spring chinook, there are clearly not enough wild fish remaining to generate sufficient tag recoveries.

The models developed in this paper omit statistical covariance in the measurement errors. We did not
attempt to model directly the process by which recruitment estimates were obtain by Petrosky et al
(1995), although such modeling is theoretically possible. The advantage of a more complete model for the
measurements of recruitment is that we would then have the appropriate error structure to include the
statistical covariance structure between recruitment measurement error and the several years of spawner-
measurement error to which they contribute. Our opinion at present is that the covariance is likely low for
two reasons. First, recruitment measurement errors originate from many important sources other than
those induced by errors in escapement counts, including conversion rates that are applied at each dam to
convert dam counts to total passage estimates, partition rates to partition passage estimates among the
measured and non-measured streams, and harvest removal corrections. Second, Chinook salmon return to
the Columbia River to spawn (and hence become part of recruitment) over four or more ages and thus the
spawner-measurement error calculated in any given year would be applicable only to a portion of the
recruitment from a given brood year.

Other concerns are the covariance in recruitment measurement errors among populations that share
nearby sub-basins (such as the Snake River populations) and auto-correlation between recruitments in
adjacent years. We did examine the latter and found it had a negligible effect.

One suggestion (J. Anderson, pers. comm.) would be to consider an alternative parameterization of µ that
takes the additional explanatory variable, percent of Snake River stocks transported, into account. At
present, the approach does not partition µ into its component sources (i.e. transportation, dams, reservoirs,
other migratory habitat impacts). This is consistent with the PATH Level 2 approach (see Chapter 1).
Incorporating a number of additional explanatory variables is an interesting avenue for future research,
one which would move the models closer to a Level 3 approach.
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Prospective Analyses

There is clearly uncertainty about the magnitude of passage mortality and of the Ricker “a” parameter,
although less uncertainty about net production of the stocks. One way to address that uncertainty is to
construct prospective analyses for a single model which encompasses a range of alternative hypotheses
about those parameter values. Such a model is Model 1 of Table 5-4 which contains year-specific µ
passage mortalities and individual stock Ricker “a” parameters, and is in a virtual tie for best model
according the to AIC criterion. Model 1 showed an inherent correlation between µ estimates and “a”
parameter estimates in the bootstrap results (R=0.90) and thus builds a feature into the analysis that was
also present in results in Table 5-4. In addition, that model will need to be generalized (as shown below)
to have a stock recruitment curve which encompasses a wider range of hypotheses about density
dependence.

The models and results of this paper can be used in the next phase of research on Prospective Analyses.
Some changes will need to be made. Bayesian analysis was not necessary for the Retrospective analysis,
but such work is critical for decision making. It is also important that the stock recruitment curve used in
prospective analyses consider both a dropping right-hand limb (i.e. a Ricker curve) and also depensatory
effects. Equation [6] is a method of fitting stock recruitment data which allows for both depensatory and
Ricker-like effects. In this equation the β parameter affects the amount of depensation, “c” a carrying
capacity term, and γ affects the right-hand limb of the curve. We also will examine a three-parameter
curve recommended by Dr. J. Collie in an earlier review. By obtaining probability distributions for these
parameters. the prospective analysis would project future states of populations based on the overall
uncertainty in stock recruitment curves. Thus, for many stocks where there are insufficient data to clearly
demonstrate either depensatory effects or a dropping right-hand limb, there would be a relatively low
probability of those types of stock recruitment curves being selected in the prospective analysis. It is
important, however, that the curves used for prospective analyses receive close scrutiny for their
biological reasonableness, since the future trajectories of populations may carry them beyond available
data.

R =  
S

(1 +  cS )

α β

γ [10]

A first step would be to assess the overall improvement in survival required by different populations to
reach certain target levels with a specified level of confidence (see Chapter 6). This analysis will help to
set targets for the aggregate effect of survival improvements in different life stages.

The mechanics of generating prospective analyses are not fully developed. However, some steps are clear.
Bayesian analysis will produce posterior probability distributions for a number of parameters (m for each
year between 1970 and 1990, δ for each year, and the stock recruitment parameters in Equation [6] (some
of which (e.g. c) will be indexed by stock)). The Bayesian analysis will generate many thousands of runs,
each consisting of a different vector of parameter values. This vector would include not only the four
parameters for the stock recruitment curve but also the 20 estimates of “m,” and δ, for each of the years
included in the analysis. For the prospective analysis, one could draw a vector of stock recruitment
parameters that is used throughout a 100-year future simulation. If it is assumed that future passage
mortality mimics the 1981-89 period, for example, then one could randomly choose one of the nine “m”
values associated with the chosen stock recruitment parameter values. In addition, one could randomly
draw a process error based on a normal distribution for each year. Different assumptions about future
passage survival could be explored using such a framework. Formal decision analysis techniques could be
applied, as discussed in the report from the PATH Workshop held in April, 1996 (Marmorek et al. 1996).
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Figure 5-1 a. Estimates of system mortality (µ) above John Day dam by brood year for eight stock-
recruitment models (numbers 1-8 in Table 5-4) and a simplified passage model in which
µ is proportional to WTT. b. Year-effect (δ) estimates for the same nine models.
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Figure 5-2 Bootstrap estimates of confidence intervals for µ and δ for models 1 and 3 in Table 5-4
(Model 1: a different for all stocks; Model 3: a same for stocks 2-13).
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Figure 5-3 Comparison of normalized ln(R/S) for upstream and downstream populations, and MLE estimates of µ. The value of µ is
generally proportional to the down-mid river line minus the upriver line.
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Figure 5-4 Comparison of CRiSP and FLUSH transport model survivals. Model T1 assumes that transport survival decreases with water
travel time, whereas model T2 assumes constant survival.
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Figure 5-5 Comparison of the MLE median estimates of µ using model 1 (see Table 5-4), with those from four mechanistic passage models.
Confidence intervals are also shown, based on the bootstrapping approach described in the text.
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Figure 5-6 a. Estimated passage mortality (µ) vs. Water Transit Time (WTT). The regression line
was fit through all of the data. The second y axis converts µ to an estimated mortality
over the complete life cycle [100*(1-e-µ)]. b) Year effect (δ) vs WTT.
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Figure 5-7 Year effect (δ) vs. estimated passage mortality (µ).
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Figure 5-8 Correlation between estimates of Ricker a parameter (average over all stocks) and 21-
year average of passage mortalities (µ) for all 37 models in Table 5-4.
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Chapter 5 Appendix 1
Measurement Error in Escapement Estimates

Charlie Petrosky

Measurement error in escapement indices contributes variability to both spawner and recruit estimates. In
the MLE framework for Level 2 analyses, a specific measurement error term is defined for estimates of
spawner escapement. Consequently, an estimate of the magnitude of measurement error is desirable for
each of the populations in the analysis. The objective of this document is to summarize information on
measurement error in ground redd counts from selected Idaho streams.

If weir counts of females are taken to be accurate measurements of actual spawners, variability in the
relationship between redd counts and weir counts can be considered to represent redd count measurement
error. Other potential sources of variation (e.g. prespawning loss, misclassification of sex at the weir,
number of redds constructed by females) would be subsumed within this error term. Because these data
are from populations are not represented as index stocks in the run reconstructions (Petrosky et al. 1995),
they constitute an independent estimate of measurement error for stocks to be included in the MLE
framework.

Methods

Data sources include numbers of females counted past weirs and subsequent ground counts of redds for
the Lemhi River, 1965-1974 (Bjornn 1978), the upper Salmon River at Sawtooth Hatchery, 1988-1992,
and Crooked River, 1991-1992 (Kiefer and Lockhart 1994). These data represent published, readily
available observations, and not an exhaustive data search. Cases where weir counts were incomplete, or
did not represent spawning escapement, were excluded from the data set (Lemhi River--1964; upper
Salmon River--1989-1990).

Ground counts of redds were regressed against the female escapement at the weir. In addition, a ratio was
calculated for each observation of redd count to female escapement at the weir; the mean and coefficient
of variation of ratios was reported.

Results and Discussion

Lemhi River weir counts of female chinook, 1965-1974, ranged from 206 to 969, while redd counts
ranged from 237 to 786 (Table 1). Recent observations from the upper Salmon River and Crooked River
ranged from 5 to 275 females past weirs, and from 4 to 261 redds counted.

Numbers of redds counted corresponded well (r2 = 0.91, p < 0.01) with females counted past the weirs
(Table 1, Fig. 1). On average, the ratio of redds counted to female escapement was 0.90, with CV = 0.24
(Table 1)
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